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Abstract

Dysregulation in immune responses during pregnancy increase the risk of a having a child with an 

autism spectrum disorder (ASD). Asthma is one of the most common chronic diseases among 

pregnant women, and symptoms often worsen during pregnancy. We recently developed a mouse 

model of maternal allergic asthma (MAA) that induces changes in sociability, repetitive and 

perseverative behaviors in the offspring. Since epigenetic changes help a static genome adapt to 

the maternal environment, activation of the immune system may epigenetically alter fetal 

microglia, the brain’s resident immune cells. We therefore tested the hypothesis that epigenomic 

alterations to microglia may be involved in behavioral abnormalities observed in MAA offspring. 

We used the genome-wide approaches of whole genome bisulfite sequencing to examine DNA 

methylation and RNA sequencing to examine gene expression in microglia from juvenile MAA 

offspring. Differentially methylated regions (DMRs) were enriched for immune signaling 

pathways and important microglial developmental transcription factor binding motifs. Differential 

expression analysis identified genes involved in controlling microglial sensitivity to the 

environment and shaping neuronal connections in the developing brain. Differentially expressed 
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associated genes significantly overlapped genes with altered expression in human ASD cortex, 

supporting a role for microglia in the pathogenesis of ASD.
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methylation; Microglia

Introduction

Epigenetic mechanisms fine tune gene expression during the development and maturation of 

the nervous and immune systems (Vogel Ciernia and LaSalle, 2016) resulting in long-lived 

phenotypic alterations without changing DNA sequence. Epigenetic mechanisms such as 

DNA methylation can be altered by environmental changes during a particular critical 

window in early life (Dolinoy et al., 2007; Jirtle and Skinner, 2007). The developing 

mammalian brain is particularly sensitive to epigenetic alterations, as mutations in 

epigenetic effectors can result in human neurodevelopmental disorders (Lasalle, 2013; Vogel 

Ciernia and LaSalle, 2016). Epigenetic changes are thought to adapt a static genome to a 

dynamic environment, providing an important interface between genetic and environmental 

risk factors in the complex etiology of autism spectrum disorders (ASD).

Epidemiological reports suggest a strong association between periods of maternal immune 

activation (MIA) during pregnancy and an increased risk of having a child with ASD 

(Atladottir et al., 2009, 2010, Zerbo et al., 2013, 2015). Early case reports and small 

comparative studies focused on infections during pregnancy associated with ASD risk 

(Chess, 1977; Sweeten et al., 2004; Libbey et al., 2005). Large population based studies in 

Denmark showed that mothers with severe infections during pregnancy that required 

hospitalization were at increased risk of having a child with ASD (Atladottir et al., 2010); a 

finding also confirmed in a Californian cohort (Zerbo et al., 2013). Moreover, taking 

antipyretic medication to reduce fever during pregnancy eliminated this increased risk for 

ASD (Zerbo et al., 2013), suggesting that treating the MIA attenuates risk. In addition to 

infections, associations of risk for ASD with autoimmune and immunological conditions 

such allergy, asthma, celiac disease, type-1 diabetes, autoimmune thyroid disease, psoriasis, 

rheumatoid arthritis, and rheumatic fever have been reported (Croen et al., 2005; Mouridsen 

et al., 2007; Atladottir et al., 2009; Mostafa and Kitchener, 2009; Keil et al., 2010), 

providing additional evidence for maternal immune dysfunction and increased risk of ASD.

Asthma is one of the most common chronic diseases among pregnant women. During 

pregnancy the median percent of women hospitalized for acute exacerbations of asthma is 

6% (Murphy et al., 2005, 2006, Ali and Ulrik, 2013a; b); however, in a study of 330 women 

with asthma, symptoms worsened in as many as 35% during pregnancy (Schatz et al., 1988). 

A large epidemiological study demonstrated that mothers with new onset allergies and 

asthma during the time of pregnancy were at increased risk for having a child with ASD 

(Croen et al., 2005). A separate study that looked at maternal allergies and asthma, 

irrespective of whether they were new onset or existing conditions, also found increased risk 

with certain allergies and ASD (Lyall et al., 2014). Recently we identified a profile of 
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elevated serum cytokines midgestation in women who gave birth to a child later diagnosed 

with ASD (Goines et al., 2011; Jones et al., 2017). This cytokine profile of elevated 

interleukins IL-4 and IL-5 was consistent with an allergic asthma clinical phenotype 

(Magnan et al., 2000; Cho et al., 2005; Tamasi et al., 2005; Kumar et al., 2006). 

Furthermore, a different midgestation maternal cytokine profile of elevated IL-6 and IL-2 

was associated with having a child with other developmental disorders, but not ASD (Goines 

et al., 2011). Amniotic fluid taken from children later diagnosed with ASD also had elevated 

levels of IL-4 whereas those with developmental delay had increased levels of IL-6 

(Abdallah et al., 2012). These reports implicate asthma/allergy and associated cytokine 

responses as a potential contributing factor to the development of ASD.

Previous work in animal models examining the impact of gestational MIA on ASD-like 

behaviors of the offspring have focused on viral and bacterial responses, using polyinosinic-

polycytidylic acid (polyI:C) or lipopolysaccharide (LPS) as experimental models 

(Whitehead et al., 2003; Nials and Uddin, 2008). However, allergies and asthma represent an 

alternative inflammatory response mediated by T-helper type 2 cells (TH2) that produce a 

different cytokine profile that may uniquely alter brain development relevant to ASD. We 

recently developed the first preclinical model of maternal allergic asthma (MAA) that 

produces the hallmark immunological responses in the MAA treated dams analogous to 

those observed in humans, including allergic airway inflammation and elevated levels of 

IL-4 and IL-5 (Schwartzer et al., 2015). MAA produced a phenotype in the offspring of 

impaired social approach and increased repetitive behaviors at both juvenile and adult ages 

(Schwartzer et al., 2015, 2017) that resemble behavioral features of ASD (Thomas et al., 

2009). MAA challenge in gestation also resulted in altered brain neurochemistry in offspring 

similar to those observed in ASD (Schwartzer et al., 2015).

In humans, fetal exposure to maternal asthma led to epigenetic alterations in DNA 

methylation patterns in peripheral blood samples of the offspring (Gunawardhana et al., 

2014). Notably, hypo-methylation in immune signaling gene MAP8KIP3 in fetal blood 

correlated with blood eosinophils, nitric oxide levels, and total serum IgE in the mother 

(Gunawardhana et al., 2014), suggesting that human MAA responses may be related to 

additional epigenetic changes in the offspring. These findings are consistent with previous 

work which found histone acetylation (Tang et al., 2013) and DNA methylation (Basil et al., 

2014; Richetto et al., 2016) changes in brain from juvenile and adult offspring in the polyI:C 

MIA mouse model. Together these results suggest that epigenetic changes within the 

immune cells of the brain may be responsible for the long-lived behavioral changes of 

offspring exposed to gestational MAA.

Within the brain microglia are brain-resident macrophages derived from erythro-myeloid 

precursors from the embryonic yolk sac that contribute to brain homeostasis and shaping 

synaptic and long-range neuronal connections (Tremblay et al., 2010; Paolicelli et al., 2011; 

Schafer et al., 2012; Hashimoto et al., 2013; Zhan et al., 2014). Microglia monitor and 

respond to their environment via specific cell surface receptors and secreted molecules, 

thereby acting as sentinel cells of tissue stress and injury (Murray and Wynn, 2011). The 

gestational timing of MAA may lead to alteration in microglial activity during key 

organizational phases of prenatal development producing long lasting changes in neural 
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circuitry. Microglia arise from the yolk sac myeloid progenitors, migrate to the brain and 

colonize the neural folds during embryogenesis with minimal replacement from peripheral 

monocytes (Squarzoni, 2015), suggesting that any perturbations to microglia in early 

development may also persist through adulthood. To test the hypothesis that gestational 

MAA is associated with long-lived ASD-relevant epigenetic changes in microglia, we 

performed genome-wide analyses of the DNA methylome and transcriptome of microglia 

isolated from juvenile offspring. The results of this study provide genome-wide evidence 

that gestational MAA alters DNA methylation of key immune regulatory elements and 

transcription of genes dysregulated in human ASD brain, supporting the validity of the 

MAA mouse model, microglia as a relevant cell type, and maternal asthma as an ASD risk 

factor.

Materials and Methods

Animals

All experiments used C57Bl/6J mice from Jackson (Jax strain 000664). All experiments 

were conducted in accordance with the National Institutes of Health Guidelines for the Care 

and Use of Laboratory Animals. All procedures were approved by the Institutional Animal 

Care and Use Committee of the University of California, Davis.

Maternal Allergic Asthma Paradigm

The MAA paradigm was conducted as previously described (Schwartzer et al., 2015, 2017). 

Briefly, on postnatal day (P) 42 and 49 sexually naive female C57Bl/6J mice were sensitized 

with a single intraperitoneal injection of 10 μg ovalbumin (OVA, Sigma, St. Louis, MO 

USA) in 1 mg (Al)OH3 (InvivoGen, San Diego, CA USA) dissolved in 200 μl phosphate 

buffered saline (PBS). One week following the second sensitization treatment, female mice 

were mated overnight and checked daily for the presence of a seminal plug, noted as 

gestational day 0.5 (G0.5). Pregnant mice were randomly assigned to either the allergic 

asthma or control group and exposed to either an aerosolized solution of 1% (wt/vl) OVA in 

PBS (MAA group) or vehicle control for three 45-minute induction on gestational days 9.5, 

12.5, and 17.5, to correspond with early, middle, and late gestation. Following the final 

induction, mice were returned to their home cages, single housed, and left undisturbed until 

the birth of their litters. Pups remained with their mother until weaning on P21, at which 

time the offspring were group housed with same-sex littermates. For all experiments female 

offspring were chosen for analysis due to previously identified increased microglial 

reactivity at P30 in females compared to males (Schwarz et al., 2012). Female MAA 

offspring also show a similar behavioral phenotype to male MAA offspring with deficits in 

social interactions, increased marble burying and decreased grooming (Schwartzer et al., 

2015, 2017).

Microglial Isolation P35

P35 female mice were deeply anaesthetized with CO2 and then quickly perfused 

intracardially with ice-cold PBS. Whole brains were removed and stored on ice in HBSS 

without Ca2+/Mg2+ until processed. Each brain was gently homogenized to a single cell 

solution using a dounce homogenizer, then added to 1.8 ml of isotonic Percoll to form a 30% 
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isotonic Percoll solution. Isotonic Percoll gradients were then constructed with layers of 

70% with 1× phenol red, 37% and 30%. The resulting gradients were centrifuged for 30 min 

at 500×g at room temperature. The top layer of myelin and non-microglial cells were 

discarded and the microglia at the interface between the 37% and 70% layers were collected. 

The resulting microglia were then washed in HBSS and counted. The collected cells were 

immediately flash frozen for RNA/DNA extraction. Given the low yield from individual 

animals, an additional animal was run in parallel and harvested microglia were used to 

assess purity by flow cytometry for CD45.2 and CD11b. Gating was first performed on live 

single cells (96%). Any highly granular myelin contamination was removed (92% 

remaining). From that >90% was microglia (CD45.2 and CD11b positive). The remaining 

≈6% (CD45.2 positive, but CD11b negative) represent a minimal contamination of other 

mononuclear cells (Figure S1).

RNA sequencing library preparation and sequencing

RNA and DNA were isolated from the same isolated microglia samples using ZR-Duet 

RNA/DNA kit (Zymo, D7001) with on-column DNase digestion (Qiagen, 79254) for RNA 

extraction. RNA and DNA were quantified using Qubit High Sensitivity assays. RNA 

quality was assessed by Bioanalyzer and only samples with RNA Integrity Number (RIN) 

scores greater than 7 were used for library preparation. 60–100 ng of input RNA per sample 

were used for RiboGone rRNA removal (Clonetech, 634847). 2 ng of rRNA depleted RNA 

per sample was then used for library construction using the SMARTer Stranded RNA-Seq 

kit (Clontech, 634836) and 14 cycles of PCR amplification. Library quality was assessed 

using a bioanalyzer and quantified by Qubit high sensitivity assay. All samples were 

barcoded, pooled, and run on a single sequencing lane of a HiSeq3000 to generate 50 bp 

single end reads. RNA-seq reads were analyzed for both quality and adapter contamination 

using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). All reads were 

trimmed using Trimmomatic (Bolger et al., 2014) using Illuminaclip single end adapter 

trimming, a removal of the first three bp from the 5′ as recommended for SMARTer 

libraries, and a 4 bp sliding window trim for quality scores less than 15. All remaining reads 

greater than 15 bp were then reanalyzed using FASTQC to verify quality. Potential library 

contamination was examined by aligning 100,000 reads from each sample to genomic 

sequences from E. coli, mouse (mm10, including rRNA and mtDNA), human (hg38), and 

PhiX using FastQ Screen (http://www.bioinformatics.babraham.ac.uk/projects/

fastq_screen/).

RNA sequencing PCA analysis

Principle Component Analysis (PCA) was conducted on read counts from published cell 

type specific RNA sequencing (Zhang et al., 2014; Mo et al., 2015) with normalization for 

library size. Raw Fastq files for each cell type were downloaded from GEO (GSE63137 and 

GSE52564) and processed as described except for paired end sequencing. PCA analysis was 

conducted on the top 500 most variably expressed genes across all cell types using custom R 

scripts. To further assess microglial purity subsampling of the aligned reads for both 

neuronal and microglial samples(Zhang et al., 2014) (GEO GSE52564) were performed to 

match the average 3×107 reads/sample (Table S2) obtained in this experiment. Specific 

proportions of randomly selected reads were then extracted from the neuron and microglial 
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samples, combined, counted and processed in EdgeR with normalization for total library 

size. Proportions for each combined mixed sample are listed in Figure S1.

RNA sequencing differential expression analysis

RNA-seq reads were aligned to the current mouse genome mm10 using the splicing-aware 

aligner Tophat2 (v2.0.14/bowtie2.2.5, stranded, Single End)(Kim et al., 2013) and reads 

aligning to each gene were counted using FeatureCounts (Liao et al., 2014) with exclusion 

of multimapping reads. The resulting table of counts per gene and sample was analyzed 

using the EdgeR pipeline (Robinson et al., 2010). Lowly expressed genes (less than 1 count 

per million reads in at least three biological replicates from either MAA or PBS groups) 

were removed from the analysis and the remaining reads were normalized for library size 

and RNA composition using the calcNormFactors function with trimmed mean of M-size 

method (Robinson and Oshlack, 2010). The normalized libraries were then fed into a one 

factor model (MAA vs. PBS) with a zero intercept. Both common and tagwise dispersions 

were estimated using estimateDisp and the resulting model was used for differential 

expression using exactTest and topTags with a filter for false discovery rate < 0.05. All 

differential expression analysis was performed on normalized counts per million (CPM) 

mapped reads. For graphical comparison of selected genes of interest and heatmap 

generation Reads per kilobase of transcript per million mapped reads (RPKM) was 

calculated using the built-in rpkm function that normalized for gene length. Gene Ontology 

and Pathway enrichment for differentially expressed genes were conducted using Enrichr 

(http://amp.pharm.mssm.edu/Enrichr/enrich) (Chen et al., 2013; Kuleshov et al., 2016) and 

then trimmed using REVIGO (http://revigo.irb.hr/) (Supek et al., 2011).

Whole Genome Bisulifte sequencing (WGBS) analysis

WGBS libraries were constructed using the Illumina EpiGnome/TruSeq DNA Methylation 

kit (Illumina, EGMK81312) with indexing barcodes (Illumina, EGIDX81312). 100 ng of 

DNA from each sample was bisulfite converted using the EZ DNA Methylation-Lightning 

kit (Zymo, D5030). Each library was given a unique barcode identifier and 14 cycles of PCR 

amplification. Libraries were quantified by Qubit and quality was assessed by Bioanalyzer. 

Sequencing of barcoded and pooled libraries was performed across two lanes of Illumina 

HiSeq4000 to obtain 100 bp single end reads.

After adapter trimming and quality assessment, all WGBS reads were mapped to the mouse 

genome (mm10) using the Bisulfite Seeker2 program (v2.0.8 with bowtie1.1.1) (Guo et al., 

2013) and subsequent analysis was done with custom Perl and R scripts (Dunaway et al., 

2016b). Differentially methylated regions (DMR) between experimental conditions was 

examined using the R packages DSS and bsseq (Feng et al., 2014). DMRs were identified as 

sets of CpGs with a t-statistic greater than the critical value for alpha 0.05 and with a gap 

between CpGs of less than 300 bases. DMRs were then filtered for those with more than 3 

CpGs, a mean methylation difference of greater than or equal to 10% between conditions, 

and an area stat of +/− 20. Further permutation testing was used to identify DMRs with a 

family wise error rate <0.05 based on 1,000 permutations of random shuffling of sample 

group assignment. The average difference in methylation was 29.94% for hyper-methylated 

and 31.57% for hypo-methylated DMRs. The average size of the hyper-methylated DMRs 
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were 492 bases with an average of 10 CpGs and hypo-methylated DMRs were on average 

composed of 450 bases and 10.9 CpGs.

DMRs were assessed for Ontology and pathway enrichment using Genomic Regions 

Enrichment of Annotations Tool (GREAT) with default settings for regulatory regions (5 kb 

+/− 1 kb of TSS and basal regulatory domain extension from nearest gene of 1Mb) (McLean 

et al., 2010) with filters for both significant binomial and hypergeometric tests (FDR < 0.05 

The resulting GO term lists were trimmed to remove redundancy using REVIGO. Motif 

enrichment within DMRs was assessed using HOMER (Heinz et al., 2010) (FDR < 0.05) 

and lists were filtered for motifs commonly identified in both hyper- and hypo-methylated 

DMRs, hypo-methylated DMRs only, or hyper-methylated DMRs only. Genes with 

transcription start sites within +/− 5kb of each DMR were identified using HOMER (Heinz 

et al., 2010).

In addition to global assessment of CpG and CpH methylation levels, CpG methylation over 

gene bodies, CpG islands, CpG shores (±2 kb from a CpG island), and tissue specific 

enhancer regions were also examined and tested for differential methylation using 

independent, two-tailed t-test with FDR correction and a minimum of 5 reads per region 

across all samples.

WGBS PCA analysis

PCA was conducted on percent mCG/CG from publish cell type specific WGBS (Lister et 

al., 2013; Mo et al., 2015). Raw Fastq files for each cell type were downloaded from GEO 

(GSE63137 and GSE47966) and processed as described for WGBS. Percent CG/CG 

methylation was extracted for 20 kb windows, gene bodies, and CpG islands for each 

sample. CpG Islands were masked from the analysis of the other two regions. PCA analysis 

was conducted on the top 500 most variable regions of each type for all cell types using 

custom R scripts.

Fluidigm Biomark HD Delta Gene Expression Assay

Gene expression for selected targets identified from RNAseq analysis were examined in an 

independent set of microglial samples isolated from PND35 female littermates of animals 

used for sequencing (Supplemental Table S3). Gene expression analysis was performed 

using the Fluidigm Biomark HD Delta gene assay on a 48.48 Integrated Fluidic Circuit. 

Delta gene assay design was performed by Fluidigm and primer sequences are listed in 

Supplemental Table S3. 20ng of total RNA was used as input for cDNA synthesis (Fluidigm, 

100–6472 B1) followed by pre-amplification (13ng per sample) (Fluidigm, 100–5875 C1) 

using a mix of all forward and reverse primers. Samples were then diluted five-fold and 

analyzed on a 48.48 IFC and Biomark HD machine (1.4ng/sample) in duplicate (Fluidigm, 

100–9791 B1). Cycle threshold values were averaged across replicates and then normalized 

to hprt expression (no difference in mean Ct values for hprt between conditions, t= 1.27, p = 

0.239) using the delta Ct method (Ct gene – Ct hprt). These values were then used for group 

comparisons with a two-tailed t-test without an assumption of equal variance. For display 

purposes, the delta delta Ct values were then calculated relative to the average Ct value of 
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the PBS treated control for each gene, and relative expression levels were then calculated for 

each group by 2^-delta delta Ct (Figure S4D).

Overlap of Gene lists

Gene list overlap was performed using the GeneOverlap (Shen, 2013) package in R with a 

Fisher’s exact test and a False Discovery Rate correction to p=0.05. Gene lists and 

references are listed in Table S7 (Voineagu et al., 2011a; Oskvig et al., 2012; Garbett et al., 

2012; Sugathan et al., 2014; Gilissen et al., 2014; Gunawardhana et al., 2014; Gupta et al., 

2014; Iossifov et al., 2014b; Cotney et al., 2015; Cronk et al., 2015; Sanders et al., 2015; 

Holtman et al., 2015; Matcovitch-Natan et al., 2016; Richetto et al., 2016; Rube et al., 2016; 

Dunaway et al., 2016b; Zhao et al., 2017; Lombardo et al., 2017). For comparisons to 

differentially expressed genes the background gene list was all genes identified as expressed 

in the RNAseq experiment (see above description) (14,301 genes). For comparisons to DMR 

associated genes, background genes were defined from a call to the DMR finder for mm10 

with no filters or cutoffs. This produces a list of all potential locations in the mm10 genome 

that could be called as a significant DMR. Genes associated with (+/− 5 kb) this background 

DMR set were used as the background list (22,412 genes). For comparisons between 

differentially expressed and DMR associated genes, a common background gene set was 

used that included the intersection of both the differentially expressed and DMR associated 

background gene list (13,694 genes that could have both been differentially expressed and 

within 5 kb of a DMR). All gene lists used in each comparison were filtered to include only 

genes present on the respective background list for that comparison. Drug target analysis 

was performed using The Drug Gene Interaction Database (dgidb.genome.wustl.edu)

(Dunaway et al., 2016b).

Results

Figure 1A shows the experimental design prior to microglial isolation. To induce a MAA 

response, female mice were pre-sensitized with OVA exposure at 6 and 7 weeks of age prior 

to breeding. Timed pregnant dams were then given three exposures to ovalbumin (OVA) 

during gestation (gestation day 9.5, 12.5, and 17.5) or three exposures to endotoxin free PBS 

to mimic immune challenge or control, respectively (Schwartzer et al., 2015).

While ASD has a pronounced sex-bias for males, both male and female MAA offspring 

show similar behavioral phenotypes deficits in social interactions, increased marble burying, 

and decreased grooming (Schwartzer et al., 2015, 2017). In rodents, adolescent females 

show increased microglial reactivity compared to males (Schwarz et al., 2012). 

Consequently, this study focused on characterizing juvenile microglia from female MAA 

offspring. In order to study the effects of in utero MAA on persistent microglial epigenomic 

signatures that coincide with the observance of ASD-like behaviors (Schwartzer et al., 2015, 

2017), microglia were isolated from juvenile mice from multiple litters (n= 4 mice from a 

total of 4 litters per condition) on P35. There were no significant differences in the number 

of microglia isolated or the RNA/DNA yields between the two treatment groups (Table S1).
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Microglial Methylome and Transcriptome Reveal Cell Type Specific Signatures

RNA sequencing was performed to examine differences in gene expression associated with 

MAA in juvenile microglia (n=4/group). There were on average 28.6 million uniquely 

mapped reads per sample and no differences in read depth or mapping between conditions 

(Table S2). All libraries passed FastQC assessment and none indicated significant sources of 

contamination during library preparation (Figure S1A & B).

We first sought to ensure that the gene expression patterns in both experimental conditions 

fit with expected microglial markers and gene expression patterns. To examine cell type 

specific gene expression patterns we compared the MAA and PBS microglia collected in 

this experiment to previously published RNA sequencing data on carefully sorted cell 

populations from mouse cerebral cortex (neurons, astrocytes, oligodendrocyte precursor 

cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial 

cells, and pericytes) (Zhang et al., 2014) and several specific types of neurons (excitatory, 

PV interneurons and VIP interneurons) (Mo et al., 2015). Both the PBS and MAA microglia 

transcriptomes cluster more closely with those of adult cortical microglia and are separated 

from those of other cortical cell types (Figure 2A). Further analysis of expression (reads per 

kilobase of transcript per million mapped reads, RPKM) values for cell type marker genes 

(Hickman et al., 2013; Zhang et al., 2014) revealed high expression of microglial markers 

and low expression of cell type specific markers from other cortical cell types (Figure 2B). 

In addition, subsampling microglial and neuronal reads from previously published RNAseq 

(Zhang et al., 2014) indicated that the percentage of neuronal RNA contamination in our 

microglial samples was minimal and between 0.2 to 4% (Figure S1C). Analysis by flow 

cytometry on samples prepared in parallel indicate a similar purity greater than 90% (Figure 

S1D).

To examine DNA methylation changes in P35 microglia between MAA and PBS treated 

samples using an unbiased genome-wide approach, we performed WGBS. There were no 

significant differences in sequencing coverage, bisulfite conversion, or in the global 

percentage of CG, CHG, or CHH methylation between treatments (Table S2). On average 

microglia showed similar levels of mCG and mCH as previously described in neurons 

(Lister et al., 2009). To examine cell type specific methylation patterns we compared 20 kb 

windows across the genome from the MAA and PBS microglia collected in this experiment 

to previously published WGBS data on several specific types of neurons (excitatory, PV 

interneurons and VIP interneurons) (Mo et al., 2015), astrocytes, and brain (P28) (Lister et 

al., 2013). Both the PBS and MAA P35 microglia samples cluster more closely with each 

other than with other cortical cell types, indicating microglia show a distinct methylation 

pattern from other brain cell types (Figure 2C). Similar patterns were observed over gene 

bodies and to a lesser extent over CpG islands (Figures S2A and B). There were no 

significant differences between MAA and PBS treatment groups in average percent CG 

methylation for a number of global genomic features, including gene bodies, 5 kb upstream 

promoter regions (with or without CpG islands), nor CpG islands (Figure S2C).
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Differentially Methylated Regions in MAA Offspring Microglia

To assess the long-term impact of MAA on epigenetic regulation in offspring microglia we 

identified locus-specific differentially methylated regions (DMRs) between MAA and PBS 

(Dunaway et al., 2016a; b). 1,184 DMRs were identified, with nearly equivalent numbers of 

hyper-methylated (626 MAA>PBS) and hypo-methylated (558 PBS>MAA) regions (Figure 

3A, Table S3). Three DMRs also passed family wise error rate (FWER) correction (Figure 

S2D). In general, MAA associated DMRs were largely localized within introns (40%) and 

intergenic sites (26%) (Figure 3B) indicating potential regulatory function.

Functional annotation was assigned to each DMR using GREAT, which included biological 

processes such as regulation of cell number, embryo development, and response to cytokine 

stimulus. Pathway analysis (Panther and MsigDB) showed enrichment for a number of 

immune pathways including inflammation mediated by cytokine and chemokine signaling 

such as IL-6, IL-4 and IL-8 signaling, as well as Jak-STAT, NF-κB, TNF and mTOR 

signaling (Figure 3C and Table S3). When specific enrichment was examined for MSigDB 

immune signatures, DMRs were found to be enriched for gene sets associated with LPS 

treatment and other types of immune cell activators (Table S3). Furthermore, genes with 

transcription start sites +/−5kb of DMRs (424 DMRs, total with 209 hyper-methylated 

DMRs and 215 hypo-methylated DMRs) (Table S5) were significantly enriched for genes 

responsive to LPS, and other immune stimuli in microglia (Figure 3D) (Hickman et al., 

2013; Holtman et al., 2015; Hanamsagar et al., 2017). Together these findings indicate that 

regions sensitive to MAA methylation differences may contain critical regulatory regions 

responsive to immune stimuli in microglia.

To evaluate potential transcription factor binding sites enriched within MAA-DMRs, we 

examined motif enrichment analysis using HOMER (Table S4). Motifs commonly enriched 

in hypo- and hyper-methylated DMRs include transcription factors related to a number of 

different functions including the SOX, SMAD, and TGFβ-induced families of transcription 

factors. Hyper-methylated DMRs were enriched for several interesting transcription factor 

motifs that are critical for early microglial development and immune activation including 

RUNX1, PU.1, IRF8, NF-kB, and MAFB. Hypo-methylated DMRs were enriched for 

several zinc finger and LIM homeobox proteins, together suggesting that regulation of 

inflammatory signaling and microglial developmental may be altered by DNA methylation 

differences in MAA microglia.

Differentially Expressed Genes in MAA Offspring Microglia

In order to understand how epigenomic differences in MAA offspring microglia were related 

to regulation of gene expression we examined differential gene expression patterns from the 

same microglial isolations that were profiled for DNA methylation. Differential expression 

between MAA and PBS samples was conducted using the standard EdgeR pipeline and 

revealed 162 differentially expressed genes at an FDR < 0.05 (Figure 4A & B and Table S5). 

Of these genes the vast majority showed greater expression in MAA samples compared to 

PBS (157 MAA>PBS). Gene Ontology enrichment analysis revealed significant enrichment 

of several categories of GO terms including gated and ion channel activity, synapse part, and 

regulation of cell projection organization (Figure S3A and Table S6). Pathway enrichment 
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using KEGG, Panther and Reactome revealed significant enrichment for pathways involved 

in a number of processes critical for neurodevelopment including several neurotransmitter 

systems, axon guidance, and synapse function (Table S6). While many of these gene targets 

are typically examined in neurons, microglia express GABAB, serotonin and dopamine, 

NMDA, AMAP, and kainic acid and metabotropic glutamate receptors that can be utilized to 

sample the local environment and consequently regulate activation, chemotaxis, secretion, 

proliferation and phagocytosis (Craner et al., 2005; Li et al., 2008; Black and Waxman, 

2012; Stebbing et al., 2015). Gene expression changes were further validated on an 

independent group of microglial samples using a Fluidigm Delta Gene Expression Assay on 

a selected subset of transcripts (Table S3B). With this independent method and cohort all 

transcripts validated the direction of expression change seen in the sequencing cohort (Table 

S5) with Hspalb levels reaching significance (p < 0.05) and Ina levels approaching 

significant (p < 0.07) (Figure S3B).

To investigate the relationship between MAA-induced methylation and expression changes, 

DMR associated genes were compared with differentially expressed genes. There was not a 

significant overlap between all differentially expressed genes and all genes associated with 

DMRs (Fisher’s exact test, Odds Ratio = 1.96, p = 0.116) with only 7 genes shared between 

the two lists (Figure 4C). There was also not a significant overlap with the 70 genes 

identified as associated with single site CpG differential methylation from blood from 

human infants from asthmatic mothers (Fisher’s exact test, all p > 0.05) (Gunawardhana et 

al., 2014). For the seven genes that did overlap between MAA differentially expressed and 

DMR associated genes, Pcdha9, Pax6 and Ina are all critical genes for normal 

neurodevelopment and are SFARI ASD risk genes (SFARI.org), suggesting that alterations 

in MAA microglial gene expression and methylation may impact similar pathways disrupted 

by ASD genetic mutations.

MAA Microglial Impacted Genes are Enriched for Genes Dysregulated in ASD

In order to more fully evaluate the impact of MAA on ASD-related risk genes we 

overlapped the differentially expressed and differentially methylated gene lists with 

previously published risk gene lists for ASD, schizophrenia, and intellectual disability (ID) 

(Sanders et al., 2012, 2015; Gilissen et al., 2014; Iossifov et al., 2014a) (Figure 5A and 

Table S7). Genes that were differentially expressed and genes that were associated with 

DMRs in MAA microglia significantly overlapped a hand curated list of SFARI ASD risk 

genes and genes with Likely Gene Disrupting (LGD) mutations in exome-sequencing from 

ASD probands (Iossifov et al., 2014). However, the majority of known genetic risk factors 

were not found within the MAA microglial gene lists, suggesting that MAA is largely 

targeting gene pathways independently impacted by genetic mutations linked to ASD and 

ID. This is not surprising given that the majority of genetic risk factors for ASD and ID are 

not immune-related (Needleman and Mcallister, 2012; Sanders et al., 2015). However, 

differences in gene expression profiling from human ASD brain have revealed changes in 

expression of immune signaling pathways and microglial genes (Voineagu et al., 2011; 

Gupta et al., 2014; Parikshak et al., 2016). To test the hypothesis that MAA microglia may 

show similar alterations in gene expression as human ASD brain samples, we overlapped the 

MAA microglial dysregulated genes with genes that showed altered expression or 
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differential epigenomic marks (DNA methylation or histone acetylation) in human ASD 

brain samples (Voineagu et al., 2011; Gupta et al., 2014; Dunaway et al., 2016b; Parikshak et 

al., 2016; Sun et al., 2016) (Figure 5B). Differentially expressed genes in MAA microglia 

significantly overlapped genes with lower expression in both idiopathic and genetic 

(15q11-13 duplication) forms of ASD as well as genes with increased acetylation. 

Furthermore, both MAA differentially expressed and DMR associated genes showed 

enrichment in a number of modules identified from network analysis of differential ASD 

gene expression from human ASD cortex (Gupta et al., 2014; Parikshak et al., 2016) (Figure 

5C and Table S7), suggesting some common pathways are disrupted in human ASD brain 

and MAA microglia.

The enrichment of dysregulated genes in MAA microglia with transcriptionally and 

epigenetically dysregulated genes in ASD brain suggests that MAA may alter similar 

pathways as those impacted by ASD. Consequently, we examined the overlap between 

MAA regulated genes and gene targets of three of the most commonly mutated regulatory 

factors implicated in ASD and ID: Fragile X Mental Retardation Protein (FMRP), 

Chromatin-Helicase DNA Binding Protein 8 (CHD8), and Methyl CpG Binding Protein 2 

(MeCP2) (Figure 4D). FMRP targets from mouse brain (Darnell et al., 2011) overlapped 

with both MAA differentially expressed and DMR associated genes (Figure 5D and Table 

S7) suggesting that key gene targets downstream of FMRP may also be impacted by MAA. 

Similar overlap between FMRP targets and genes acutely regulated 4 hours following LPS 

induced MIA has also been previously observed (Lombardo et al., 2017), suggesting that 

FMRP target genes may be specifically vulnerable to maternal inflammation. There was no 

significant overlap between either MAA gene list and identified CHD8 target genes from 

multiple datasets (Sugathan et al., 2014; Cotney et al., 2015). MAA DMR associated genes 

were enriched in MeCP2 target genes identified from high resolution ChIP-sequencing from 

olfactory epithelium neurons (Rube et al., 2016), suggesting MeCP2 may be associated with 

sites of MAA differential methylation. MeCP2 has previously been implicated in microglial 

function in Rett syndrome (Derecki et al., 2012; Cronk et al., 2015; Schafer and Stevens, 

2015), and microglia from Rett mouse models show altered gene expression patterns related 

to glucocorticoid signaling and stress response (Cronk et al., 2015; Zhao et al., 2017). Genes 

differentially expressed in Rett syndrome mouse model microglia overlapped both MAA 

differentially expressed and DMR associated genes (Figure 5E and Table S7), further 

supporting the role for MeCP2 as a reader of DNA methylation in microglia and indicating 

that MeCP2 function may be negatively impacted in MAA microglia.

MAA Offspring Microglia Compared to Other MIA Models

Maternal immune activation has been utilized as a model of ASD as well as schizophrenia 

and general neurodevelopmental impairment (Hagberg et al., 2012; Mattei et al., 2017). The 

MAA model was originally designed to examine allergic asthma as a risk factor for ASD, 

but the model may be applicable to other neurodevelopmental disorders that share maternal 

immune activation as a risk factor. To compare our MAA model to other MIA models we 

overlapped the MAA gene lists with published datasets from maternal exposures to LPS, 

PolyI:C, influenza, or direct cytokine injection. DNA methylation in MAA microglia and 

whole prefrontal cortex from PolyI:C induced MIA (Richetto et al., 2016) showed similar 
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patterns of differential methylation (Figure S4A) suggesting the long-lasting DNA 

methylation signatures in the brain may be target similar pathways across MIA/MAA 

models. In comparison, our MAA differentially expressed and DMR associated microglial 

gene lists largely did not overlap with whole brain gene expression patterns induced four 

hours following different types of MIA (LPS, recombinant IL6, PolyI:C) (Figure S4B and 

Table S7). The one exception to this was a significant overlap with genes acutely 

downregulated in response to LPS MIA. There were mixed findings for gene overlap with 

microglia isolated from PolyI:C MIA models. MAA microglial gene lists did not overlap 

dysregulated genes identified in a PolyI:C MIA model from isolated microglia from whole 

brain on P0 or P28 (Matcovitch-Natan et al., 2016) (Figure S4B). However, MAA 

differentially expressed genes significantly overlapped with genes that were up-regulated in 

a PolyI:C MIA model from hippocampal microglia from adult animals (Mattei et al., 2017) 

(Figure S4C) suggesting that MAA may impact hippocampal microglia. Interestingly, both 

MAA differentially expressed and DMR associated gene lists overlapped genes that were 

responsive to minocycline treatment in adult MIA animals (Mattei et al., 2017) (Figure 

S4C), indicating that minocycline may serve as a potential therapeutic for reversing some of 

the MAA offspring phenotypes.

Discussion

In this study we identified epigenetic changes in microglia from juvenile offspring of MAA 

dams that advance the understanding of maternal immune activation and ASD risk in several 

important ways. We found differentially methylation regions enriched for transcription 

factor binding sites related to immune signaling, microglial inflammation, and regulation of 

microglial development. This immune related methylome signature in MAA offspring 

microglia implicates altered epigenomic regulation of microglial inflammatory responses as 

a result of MAA. Importantly for ASD relevance, transcriptome profiling of MAA microglia 

identified key developmental genes related to synaptic function that are also misregulated in 

human ASD brain.

The gestational timing of MAA may preferentially affect changes in microglial function in 

offspring, a perturbation that may be marked by changes in DNA methylation that persist as 

microglia develop. Microglia migration to the brain and colonization of the neural folds 

during embryogenesis with minimal turnover (Squarzoni, 2015), suggesting that 

perturbations to microglia in early development may be maintained throughout the lifetime 

of the animal. Previous work with PolyI:C MIA demonstrated long-lasting alterations in 

histone modifications (Tang et al., 2013) and DNA methylation (Basil et al., 2014; Richetto 

et al., 2014, 2016) in adult brain that stem from in utero exposures at mid gestation. While it 

is unclear if the methylation changes in juvenile MAA microglia are direct or secondary 

impacts from MAA, the enrichment for numerous immune related pathways including IL-6, 

IL-4, and IL-8 signaling, NF-kB activation and JAK/STAT signaling, suggests that DMRs 

may either serve as a signature of prior immune activation during gestation or as epigenetic 

mechanisms for priming future immune function. The enrichment of DMRs for IL-4 

signaling is consistent with the cytokine profile of elevated IL-4 and IL-5 observed in 

asthma (Magnan et al., 2000; Cho et al., 2005; Tamasi et al., 2005; Kumar et al., 2006), the 

mid-gestation serum cytokines profiles observed in women who gave birth to a child later 
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diagnosed with ASD (Goines et al., 2011; Jones et al., 2017), and in amniotic fluid taken 

from children later diagnosed with ASD (Abdallah et al., 2012). Similarly, the enrichment of 

DMRs for a number of transcription factor motifs critical for early development of microglia 

(RUNX1, PU.1, and IRF8) indicate that MAA may shift the developmental regulation of 

microglial function. For example, RUNX1 is expressed in microglial yolk sac progenitors 

and plays a critical role in regulating microglial proliferation in early brain development 

(Ginhoux et al., 2010) by ensuring that developing microglia transition from an amoeboid to 

mature, ramified state during differentiation (Zusso et al., 2012). Similarly, PU.1 is a pioneer 

transcription factor with DNA methylation sensitive binding (Stephens and Poon, 2016) 

critical for microglia progenitor development (Kierdorf et al., 2013; Goldmann et al., 2016), 

regulates microglia specific enhancers (Gosselin et al., 2014) and gene expression (Satoh et 

al., 2014). PU.1 and shows increased expression in human ASD brain(Gupta et al., 2014), 

and manipulations of PU.1 alter the expression of key microglial genes and phagocytosis 

function (Huang et al., 2017), indicating that changes in PU.1 binding could dramatically 

alter microglial function in ASD. Future studies will be needed to examine the impact of 

MAA on microglia from different stages of development and in altering the transcriptional 

response to secondary immune activation (i.e. LPS).

In human ASD brain samples, whole genome analysis has identified alterations in DNA 

methylation (Nardone et al., 2014; Dunaway et al., 2016b) and gene expression (Voineagu et 

al., 2011; Gupta et al., 2014; Werling et al., 2016) of a number of immune related genes 

including components of the complement cascade C1Q, C3, ITGB2 and the cytokine TNFα. 

Several studies have identified alterations in microglia morphology and density in post-

mortem brain samples from ASD patients (Vargas et al., 2005; Morgan et al., 2010, 2012, 

2014; Tetreault et al., 2012). In at least a subset of ASD cases, microglia adopt an immune 

activated morphology characterized by retraction and thickening of processes and 

enlargement of the soma in multiple brain regions including the dorsolateral prefrontal 

cortex (Morgan et al., 2010), amygdala (Morgan et al., 2014), and cerebellum (Vargas et al., 

2005). Using positron emission tomography and a radiotracer for microglia, Suzuki and 

colleagues found evidence for increased microglia activation in multiple brain regions in 

young adults with ASD (Suzuki et al., 2013). Given that immune system related genes are 

not highly prevalent among the genetic candidates for ASD risk, the alterations in expression 

and methylation of immune genes in ASD may occur in reaction to abnormal 

neurodevelopment and/or in response to environmental factors such as maternal immune 

activation.

The significant overlap of MAA differentially expressed genes with genes differentially 

expressed or differentially acetylated in ASD brain provides support for the role of maternal 

immune dysregulation in the etiology of ASD. MAA may also impact some of the same 

downstream transcriptional pathways that are regulated by MeCP2 and FMRP. While FRMP 

was not a direct target of MAA in our data, Cytoplasmic FMRP Interaction Protein 2 
(Cyfip2) had an intronic hyper-methylated DMR in the MAA microglia. CYIFP2 expression 

is altered in Fragile X-syndrome (Hoeffer et al., 2012) and defective CYFIP/FMRP 

interactions have been implicated in ASD and ID (Abekhoukh and Bardoni, 2014) and may 

mediate some of the overlapping genes targeted by FMRP and regulated by MAA. MeCP2 

expression was also not altered by MAA, but genes targeted by MeCP2 binding and genes 
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sensitive to loss of MeCP2 in microglia significantly overlapped MAA genes, indicating 

MeCP2 may play a role in regulating gene expression differences in MAA microglia.

The vast majority of differentially expressed genes in MAA microglia showed a significant 

increase in expression relative to PBS controls. While not expected, this increase in 

expression is consistent with other MIA experiments in whole brain examining acute 

responses to MIA treatments (Garbett et al., 2012), suggesting an increased sensitivity to 

environmental signals. For example, we found increased expression of voltage-gated 

calcium channel subunit Cacna1b, voltage-gated potassium channel subunits (Kcnab1 and 

Kcnd2), and voltage-gated sodium channel subunits (Scn1a, Scn2a, and Scn2b). Canca1b, 

Kcnd2 and Scn1a are also ASD candidate genes and increased expression of a number of 

ligand-gated ion channels upon MAA could lead to altered function (Eder, 1998; Craner et 

al., 2005; Schilling and Eder, 2007, 2015; Li et al., 2008; Black et al., 2009; Wu et al., 2009; 

Black and Waxman, 2012; Stebbing et al., 2015). Increased surface receptor expression in 

MAA microglia would be consistent with motif enrichment of DMRs for transcription 

factors related to adult homeostatic function in microglia (FOS, MEF2A, MAFB)

(Matcovitch-Natan et al., 2016). For example, MAFB expression is induced during 

microglial maturation, its motif is enriched in macrophage-specific enhancers, and deletion 

of Mafb specifically in microglia increases gene expression for immune and viral response 

genes (Matcovitch-Natan et al., 2016). Together these findings suggest that MAA results in 

long-lasting changes in the ability of microglia to sense and respond to changes in the local 

brain environment. Altered sensitivity of MAA microglia could potentially dramatically alter 

the key role of microglia in sculpting neuronal connections and neuronal cell number in the 

developing brain (Tremblay et al., 2010; Paolicelli et al., 2011; Hagberg et al., 2012; Schafer 

et al., 2012; Zhan et al., 2014), as further suggested by enrichment of MAA differentially 

expressed genes for pathways involved in regulation of cell projection organization, neuronal 

differentiation, and neuronal apoptotic processes (Table S6). Experimentally removing or 

manipulating microglia in fetal life or during transient postnatal stages has been 

demonstrated to have profound effects on the number and strength of neuronal synapses, 

neuronal circuit development, and behavior (Paolicelli et al., 2011; Cunningham et al., 2013; 

Zhan et al., 2014; Kim et al., 2016). Previous work showed that early life perinatal 

inflammation (LPS GD15 and 16) augmented fetal microglia activity and decreased 

neuronal precursors in the developing rat cerebral cortex (Cunningham et al., 2013), leading 

to impaired corpus callosum fasciculation (Pont-Lezica et al., 2014), dopaminergic axon 

outgrowth (Squarzoni et al., 2014), and alterations in glutamatergic synapses in the adult 

offspring (Roumier et al., 2008). Our results show that MAA microglia have significant 

transcriptional and epigenetic alterations to genes important in axon guidance and receptor 

function that are consistent with altered sensitivity to the environment and neuronal circuit 

development.

One potential limitation of our study was a low level of neuronal contamination (0.2-2% in 

control versus 0.5-4% in MAA, Fig. S1C) in our microglial isolations due to the inherent 

microglial-neuronal interactions including phagocytosis that occur in brain. While our 

microglia isolations were above the purity of another published microglial transcriptome 

study (Zhao et al., 2017), we cannot be certain that the higher expression of some of the 

typically neuronal genes were cell intrinsic to microglia rather than a result of increased 
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neuronal phagocytosis in the MAA brain (Solga et al., 2015), although either explanation is 

of interest for understanding the pathogenesis. While the function of many of these 

neurotransmitter receptors on microglia is largely unknown (Schafer et al., 2013), their 

overall increase in expression following MAA suggests that microglia have altered 

sensitivity in the juvenile MAA brain. This is consistent with recent work from a PolyI:C 

MIA model that showed altered gene expression of cell surface receptors and phagocytosis 

activity of adult hippocampal microglia (Mattei et al., 2017). Genes misregulated in this 

model overlapped the MAA differentially expressed genes indicating shared molecular 

pathways and functions may be disrupted. In addition, MAA impacted genes also 

overlapped genes responsive to adult minocycline treatment in this MIA model, suggesting 

minocycline may be able to similarly reverse the behavioral, gene expression and microglial 

functional deficits in the MAA offspring. Alternatively, many of the receptors showing 

increased expression in MAA offspring microglia are identified drug targets for a variety of 

pharmaceuticals (Table S6) that may provide novel options for therapeutics, as is being 

explored in other neurologic disorders (Eder, 2010).

This work provides a novel link between maternal allergic asthma and changes in the 

microglial epigenome, indicating that microglia may serve as a potential therapeutic target 

for normalizing fetal brain connectivity deficits observed in ASD. Removal of microglia 

from the adult mouse brain by pharmacological treatment did not negatively impact adult 

behavior (Elmore et al., 2014, 2015) and improved behavioral deficits in an Alzheimer’s 

disease model (Rice et al., 2015), suggesting microglial contributions to neuro-immune 

dysfunction can be reversed in the adult. Given the emerging importance of microglia to 

multiple neuropsychiatric disorders, uncovering the microglial epigenetic landscape is the 

first step towards understanding how in utero exposures may influence microglia function 

and dysfunction in later life. Together, our findings present the first whole genome 

evaluation of microglial DNA methylation and support a role for maternal immune 

activation in altering microglial function as part of the pathogenesis of ASD.
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Refer to Web version on PubMed Central for supplementary material.
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PBS Phosphate buffered saline

mCG methylated CpG

CHH methylated CpA or CpC or CpT
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Main Points

• Maternal allergic asthma induces changes in DNA methylation and 

transcription in juvenile offspring microglia

• Differentially methylated regions are enriched for functions and transcription 

factor binding motifs involved in inflammation and microglial development

• Differentially expressed genes and differentially methylated regions are 

enriched for genes dysregulated in Autism Spectrum Disorders
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Figure 1. Maternal Allergic Asthma Model
A. Maternal allergic allergy/asthma (MAA) was induced by pre-sensitizing dams to 

ovalbumin (OVA) prior to mating. During subsequent pregnancy half of the dams were 

challenged with OVA (gestation day (GD) 9,12, and 17) and the other half received PBS. 

Microglia were then harvested from the resulting female pups on postnatal day 35 (P35). 

Male pups were used for behavioral assessment as part of a recently published study 

(Schwartzer et al., 2017).
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Figure 2. Microglial Transcriptome and Methylome Reveal Cell Type Specific Signatures
A. Principle component analysis of the gene counts from the top 500 most variably 

expressed genes across multiple brain cell types (neurons, astrocytes, oligodendrocyte 

precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, 

endothelial cells, and pericytes (Zhang et al., 2014) and several specific types of neurons 

(excitatory, PV interneurons and VIP interneurons (Mo et al., 2015)). B. RPKM values for 

selected cell type marker genes (Hickman et al., 2013; Zhang et al., 2014) for MAA and 

PBS samples (n=4/group). Oligodendrocyte precursor cells (OPC), newly formed 

oligodendrocyte (NFO), myelinating oligodendrocyte (MO). Error bars +/− SEM C. 

Log2RPKM values for MAA compared to PBS microglial RNAseq samples (n=4/group). C. 

Principle component analysis of the %mCG/CG from the top 500 most variably methylated 

20 kb windows across the genome of multiple brain cell types including several specific 

types of neurons (excitatory, PV interneurons and VIP interneurons (Mo et al., 2015)), 

astrocytes and total fetal cortex (P28) (Lister et al., 2013). CpG Islands were masked from 

the analysis.
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Figure 3. Differential Methylation between MAA and PBS Microglia
A. Differentially methylated regions (DMRs) with an area statistic >= +/−20 and a 10% or 

greater difference in average methylation between treatments. 1184 DMRs were identified in 

two clusters: hyper-methylation (MAA>PBS, 626 and hypomethylation (PBS>MAA, 558). 

Values shown in the heatmap are the difference from the mean for mCG methylation: % 

mCG/CG minus the mean of %mCG/CG for all samples. See Table S3. B. Distribution of 

DMRs relative to Transcription Start Sites within +/− 5kb of the DMR (HOMER (Heinz et 

al., 2010) annotation). C. Top 20 significantly enriched pathways from MSigDB using 

GREAT annotation of 1184 DMRs. Region Fold Enrichment: observed number of DMRs 

with the annotation/expected number of DMRs with the annotation (McLean et al., 2010). 

See Table S4 for full lists. D. Fisher’s Exact Test Odds Ratios for gene list overlap between 

genes with transcription start sites +/− 5kb from the MAA DMRs. DMR associated genes 

significantly overlapped genes from the microglial (MG) sensome (Hickman et al., 2013), 

primed microglia, genes up-regulated acutely in response to LPS (Holtman et al., 2015), and 

Ciernia et al. Page 29

Glia. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genes up-regulated in microglia two hours after LPS in males and females at postnatal day 

60 (P60) (Hanamsagar et al., 2017). See Table S7 for full lists and statistics.
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Figure 4. RNA Sequencing Analysis of P35 Microglia
A. Significantly differentially expressed genes (162; FDR q <0.05) are highlighted in red. 

Genes with log fold change >= 2.5 are labeled. B. Heatmap of log2 RPKM values for the 

162 differentially expressed genes between MAA and PBS conditions. Hierarchical clusters 

(k=3) were used to identify patterns of gene expression using hclust in R. See Table S5 for 

gene lists, RPKM values, and statistics. C. MAA differentially expressed and DMR 

associated (+/− 5kb from a DMR) share seven genes. See Table S7 for statistics.

Ciernia et al. Page 31

Glia. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
MAA Differentially Expressed and DMR Associated Genes Overlap Genes Dysregulated in 

ASD. A. Gene list overlaps between MAA differentially expressed genes (MAA DE genes), 

MAA DMR associated genes (MAA DMR genes) and ASD genetic risk genes (Sanders et 

al., 2012, 2015; Gilissen et al., 2014; Iossifov et al., 2014a). C. Gene list overlaps between 

MAA DE genes, MAA DMR associated genes and genes differentially expressed, 

methylated, or acetylated in human ASD brain samples (Voineagu et al., 2011; Gupta et al., 

2014; Dunaway et al., 2016b; Parikshak et al., 2016; Sun et al., 2016). D. Gene list overlaps 
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between MAA DE genes, MAA DMR associated genes and MeCP2, FMRP, or CHD8 target 

genes (Darnell et al., 2011; Sugathan et al., 2014; Cotney et al., 2015; Rube et al., 2016). E. 

Gene list overlaps between MAA DE genes, MAA DMR associated genes and genes 

differentially expressed in microglia from Rett syndrome mouse models (Cronk et al., 2015; 

Zhao et al., 2017). Lists are from MeCP2−/y null males (fully symptomatic), MeCP2−/+ 

heterozygous females at either 5 weeks (prior to symptom onset) or at 24 weeks (fully 

symptomatic). * Fisher’s exact test with FDR corrected p-value <0.05. Gene lists, citations 

and individual statistics are listed in Table S7.
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